(I Got A Little Artsy For The Promo Videos And Wanted To Share...) PATHWAY TO THE STARS: PART 2, ELIZA

(I Got A Little Artsy For The Promo Videos And Wanted To Share...) PATHWAY TO THE STARS: PART 2, ELIZA

(I got a little artsy for the promo videos and wanted to share...) PATHWAY TO THE STARS: PART 2, ELIZA WILLIAMS is the second in the space opera booklet series, PATHWAY TO THE STARS. "We need to understand how dark energy and dark matter work, find ways to slow down the expansion or cause the Universe to breathe just enough to protect itself and all of life along with it. We need everyone who is willing." ~ Yesha Alevtina talking with Eliza Williams The story continues, Experience the early life of our future scientific and political hero, Eliza Williams, and the beginning of a new era! Vesha Celeste continues her training and journey with Yesha Alevtina, who shows and teaches her about Eliza Williams, through complete experiential immersion in the Virtual Universe. With the added advantages of time-dilation, neural linking, and nano-technology giving her tactile-reference, she sees Eliza’s life as if she were Eliza, herself. Vesha witnesses the critical aspects that lead to Eliza’s transformation and the formation of Pathway LLC. Eliza’s work to create the first biopods for physiological and neurological optimizations will be one of her primary vehicles to drive all of her advances and designs, solar-system-wide. There is a lot for Vesha to learn, and she too will play an integral role in our journeys throughout the cosmos, as this story progresses. Each ability she experiences in others, her optimized mind will be capable of learning and expounding upon exponentially. Enjoy the second part of this space opera booklet series, as we see our team of heroes doing what they can to help humanity in their quest to save the Universe one very-important step at a time. Enjoy this continuing saga as we are introduced to Eliza Williams, a critical leader-in-the-making, in this pathway to the stars! Available in paperback on Amazon Kindle and Barnes & Noble online. eBook available for $2.99 via Kindle eBooks. Audiobook is in the works, narrated and produced by Allison Taylor. #spaceopera #spaceoperabooks #scifibooks #scifi #fantasy #books #solarsystem #CRISPR #neuroscience #longevity #wellbeingfirst #pathwaytothestars https://www.instagram.com/p/B1YlbtWhFxK/?igshid=lovyil9nitpj

More Posts from Matthewjopdyke and Others

6 years ago
Ask Ethan: How Does Very-Long-Baseline Interferometry Allow Us To Image A Black Hole?
Ask Ethan: How Does Very-Long-Baseline Interferometry Allow Us To Image A Black Hole?
Ask Ethan: How Does Very-Long-Baseline Interferometry Allow Us To Image A Black Hole?
Ask Ethan: How Does Very-Long-Baseline Interferometry Allow Us To Image A Black Hole?
Ask Ethan: How Does Very-Long-Baseline Interferometry Allow Us To Image A Black Hole?
Ask Ethan: How Does Very-Long-Baseline Interferometry Allow Us To Image A Black Hole?
Ask Ethan: How Does Very-Long-Baseline Interferometry Allow Us To Image A Black Hole?
Ask Ethan: How Does Very-Long-Baseline Interferometry Allow Us To Image A Black Hole?
Ask Ethan: How Does Very-Long-Baseline Interferometry Allow Us To Image A Black Hole?
Ask Ethan: How Does Very-Long-Baseline Interferometry Allow Us To Image A Black Hole?

Ask Ethan: How Does Very-Long-Baseline Interferometry Allow Us To Image A Black Hole?

“[The Event Horizon Telescope] uses VLBI. So what is interferometry and how was it employed by [the Event Horizon Telescope]? Seems like it was a key ingredient in producing the image of M87 but I have no idea how or why. Care to elucidate?”

If it were easy to network radio telescopes together across the world, we’d have produced an image of a black hole’s event horizon long ago. Well, it’s not easy at all, but it is at least possible! The technique that enabled it is known as VLBI: very-long-baseline interferometry. But there are some critical steps that aren’t very obvious that need to happen in order for this method to succeed. Remarkably, we learned how to do it and have successfully employed it, and the Event Horizon Telescope marks the first time we’ve ever been able to get an image with a telescope that’s effectively the size of planet Earth!

Come get the incredible science behind how the technique of VLBI enabled the Event Horizon Telescope to construct the first-ever image of a black hole’s event horizon!

8 years ago

What a nice vantage point :)

The Milky Way Seen From A Sea Cave In Malibu, California

The Milky Way seen from a sea cave in Malibu, California

source

7 years ago
Thank You For Your Endless Curiosity Dr. Hawking.

Thank you for your endless curiosity Dr. Hawking.

5 years ago

Pathway to the Stars: Part 11, A New Day

"If we can love ourselves, we can then truly understand what it means to love others and be kind. There is potential that lies within you and everyone else. It is a potential that has always been meant to exist, to bring something greater to this reality of life."

~ Sky Taylor

This story is the eleventh of the Pathway to the Stars space opera series. Sky journeys with Erin Carter and Joanne Gallant, who are now Pathway's president and vice president. On their adventure, she shows them ways to heal the Earth as well as ourselves so we can promote a healthier form of longevity.

To Sky, there is much we can do to prevent future disasters, but sometimes solutions can involve something as simple as a nice walk. In this case, unfortunately, to help Joanne figure out a mystery weighing upon her.

Meanwhile, Eliza Williams and Yesha Alevtina work for the success of the Universal Party with efforts that will affect the United States, the World, and the mission to span the Cosmos!

LCCN: 2019919255

ISBN: 978-1-951321-15-4

eBook: https://smile.amazon.com/dp/B081XNYSL4

Paperback: https://smile.amazon.com/dp/1951321154

#ScienceFiction #Scifi #SpaceOpera #Fantasy #Author #MatthewJOpdyke #EarthFirst #Preservation #ConsiderationForAllLiving #Biology #Neuroscience #Biotechnology #AI #HBCI

5 years ago
The Pinwheel Galaxy Has Around A Trillion Stars, Twice The Number In The Milky Way. [6000 × 4690]

The Pinwheel Galaxy has around a trillion stars, twice the number in the Milky Way. [6000 × 4690]

5 years ago

Video for my newly released book, Pathway to the Stars: Part 7, Span of Influence. As always, it was fun putting it together. (Please help to get the word out! Thank you!) <3  "To be worthy to journey the stars, conditions must be such that if a group of explorers were to return home many millennia later, humanity will not have faded away into nothing. Instead, they will have preserved the homeworld and home solar system, and even improved upon the beauty, the abundance, and the ability of longevity of life in every way that is positive and possible." 

Eliza Williams works with her team in the Pathway organization to increase her span of influence throughout the world. Journey with Vesha Celeste as she continues her adventures with Yesha Alevtina in the Virtual Universe, understanding more fully how Eliza's team has become the enigmatic propagator of the future. With tech cities spanning the Solar System yet hidden from those who have not been read-in, humanity will be breath taken to behold them. Eliza takes on some of the biggest titans of every industry and teaches them what she believes will fuel the future -- kindness, shared-well-being, compassion, and consent, or what she coins as Universal Ethics!

Span of Influence, ISBN: 9781951321055, LCCN: 2019918436

eBook:  https://www.amazon.com/dp/B081XHLJ36

Paperback:  https://www.amazon.com/dp/1951321073

5 years ago
Enjoy This First-Year-Anniversary Compilation Of All Of My Works In One Title: A Cosmic Legacy: From

Enjoy this First-Year-Anniversary compilation of all of my works in one title: A Cosmic Legacy: From Earth to the Stars This title includes the following works wrapped up into one story: Further Than Before: Pathway to the Stars, Part 1 Further Than Before: Pathway to the Stars, Part 2 Pathway to the Stars: Part 1, Vesha Celeste Pathway to the Stars: Part 2, Eliza Williams Pathway to the Stars: Part 3, James Cooper Pathway to the Stars: Part 4, Universal Party Pathway to the Stars: Part 5, Amber Blythe Pathway to the Stars: Part 6, Erin Carter "Our beautiful mother world ached for a reprieve from the injustices of many, courtesy of cultures and governance systems, that forgot how to love, how to be kind, how to include others, and how to think beyond the scope of greed and power, but within the visions of shared joy and well-being." Together with the organization Eliza Williams founded, called Pathway, she and her growing team will take us on a fantastical and Utopian journey to get us out and into the farthest reaches of space. There are dilemmas such as the physiological effects of space on each of us, as well as the need for longevity and a desire to still be able to visit loved ones following long journeys. Eliza and her team develop capabilities, so we can overcome the challenges ahead and are determined to stabilize a rocky economy, wipe away suffering, violence, disease, cartels, terrorism, and trafficking in persons. They work together to tame seismic activity, weather, and fires. She and her friends tackle ways to prevent extinction and provide solutions to quality of life concerns. They even consider the longevity of our Sun and our Earth's capacity to preserve life. Eliza tackles each of these issues to get us out, and into the stars, so we can begin our biggest quest--to help our Universe breathe ever so lightly. #amazing #science #fiction #novels #best #new #books #scifi #online #read #longevity #CRISPR #physiology #neurology #physics #theoretical #philosphical #politcal #educational #STEM #AmazonAuthor #BarnesAndNobleAuthor #wellbeing #quality #biotech #nanotech #SpaceOpera #astronomy #selfpublished https://www.instagram.com/p/B2GkDbYBs0y/?igshid=ufavr7j6lsy1


Tags
6 years ago

Black Holes are NICER Than You Think!

We’re learning more every day about black holes thanks to one of the instruments aboard the International Space Station! Our Neutron star Interior Composition Explorer (NICER) instrument is keeping an eye on some of the most mysterious cosmic phenomena.

image

We’re going to talk about some of the amazing new things NICER is showing us about black holes. But first, let’s talk about black holes — how do they work, and where do they come from? There are two important types of black holes we’ll talk about here: stellar and supermassive. Stellar mass black holes are three to dozens of times as massive as our Sun while supermassive black holes can be billions of times as massive!

image

Stellar black holes begin with a bang — literally! They are one of the possible objects left over after a large star dies in a supernova explosion. Scientists think there are as many as a billion stellar mass black holes in our Milky Way galaxy alone!

Supermassive black holes have remained rather mysterious in comparison. Data suggest that supermassive black holes could be created when multiple black holes merge and make a bigger one. Or that these black holes formed during the early stages of galaxy formation, born when massive clouds of gas collapsed billions of years ago. There is very strong evidence that a supermassive black hole lies at the center of all large galaxies, as in our Milky Way.

image

Imagine an object 10 times more massive than the Sun squeezed into a sphere approximately the diameter of New York City — or cramming a billion trillion people into a car! These two examples give a sense of how incredibly compact and dense black holes can be.

Because so much stuff is squished into such a relatively small volume, a black hole’s gravity is strong enough that nothing — not even light — can escape from it. But if light can’t escape a dark fate when it encounters a black hole, how can we “see” black holes?

image

Scientists can’t observe black holes directly, because light can’t escape to bring us information about what’s going on inside them. Instead, they detect the presence of black holes indirectly — by looking for their effects on the cosmic objects around them. We see stars orbiting something massive but invisible to our telescopes, or even disappearing entirely!

When a star approaches a black hole’s event horizon — the point of no return — it’s torn apart. A technical term for this is “spaghettification” — we’re not kidding! Cosmic objects that go through the process of spaghettification become vertically stretched and horizontally compressed into thin, long shapes like noodles.

image

Scientists can also look for accretion disks when searching for black holes. These disks are relatively flat sheets of gas and dust that surround a cosmic object such as a star or black hole. The material in the disk swirls around and around, until it falls into the black hole. And because of the friction created by the constant movement, the material becomes super hot and emits light, including X-rays.  

At last — light! Different wavelengths of light coming from accretion disks are something we can see with our instruments. This reveals important information about black holes, even though we can’t see them directly.

image

So what has NICER helped us learn about black holes? One of the objects this instrument has studied during its time aboard the International Space Station is the ever-so-forgettably-named black hole GRS 1915+105, which lies nearly 36,000 light-years — or 200 million billion miles — away, in the direction of the constellation Aquila.

Scientists have found disk winds — fast streams of gas created by heat or pressure — near this black hole. Disk winds are pretty peculiar, and we still have a lot of questions about them. Where do they come from? And do they change the shape of the accretion disk?

image

It’s been difficult to answer these questions, but NICER is more sensitive than previous missions designed to return similar science data. Plus NICER often looks at GRS 1915+105 so it can see changes over time.

NICER’s observations of GRS 1915+105 have provided astronomers a prime example of disk wind patterns, allowing scientists to construct models that can help us better understand how accretion disks and their outflows around black holes work.

image

NICER has also collected data on a stellar mass black hole with another long name — MAXI J1535-571 (we can call it J1535 for short) — adding to information provided by NuSTAR, Chandra, and MAXI. Even though these are all X-ray detectors, their observations tell us something slightly different about J1535, complementing each other’s data!

This rapidly spinning black hole is part of a binary system, slurping material off its partner, a star. A thin halo of hot gas above the disk illuminates the accretion disk and causes it to glow in X-ray light, which reveals still more information about the shape, temperature, and even the chemical content of the disk. And it turns out that J1535’s disk may be warped!

image

Image courtesy of NRAO/AUI and Artist: John Kagaya (Hoshi No Techou)

This isn’t the first time we have seen evidence for a warped disk, but J1535’s disk can help us learn more about stellar black holes in binary systems, such as how they feed off their companions and how the accretion disks around black holes are structured.

NICER primarily studies neutron stars — it’s in the name! These are lighter-weight relatives of black holes that can be formed when stars explode. But NICER is also changing what we know about many types of X-ray sources. Thanks to NICER’s efforts, we are one step closer to a complete picture of black holes. And hey, that’s pretty nice!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

8 years ago

Happy International Women’s Day!

image

Today we celebrate International Women’s Day, a day in which we honor and recognize the contributions of women…both on Earth and in space.

Happy International Women’s Day!

Since the beginning, women have been essential to the progression and success of America’s space program.

image

Throughout history, women have had to overcome struggles in the workplace. The victories for gender rights were not achieved easily or quickly, and our work is not done.

Happy International Women’s Day!

Today, we strive to make sure that our legacy of inclusion and excellence lives on.

image

We have a long-standing cultural commitment to excellence that is largely driven by data, including data about our people. And our data shows progress is driven by questioning our assumptions and cultural prejudices – by embracing and nurturing all talent we have available, regardless of gender, race or other protected status, to build a workforce as diverse as our mission. This is how we, as a nation, will take the next giant leap in exploration.

image

As a world leader in science, aeronautics, space exploration and technology, we have a diverse mission that demands talent from every corner of America, and every walk of life.

image

So, join us today, and every day, as we continue our legacy of inclusion and excellence.

image

Happy International Women’s Day!

Learn more about the inspiring woman at NASA here: https://women.nasa.gov/

7 years ago

Meet Fermi: Our Eyes on the Gamma-Ray Sky

Black holes, cosmic rays, neutron stars and even new kinds of physics — for 10 years, data from our Fermi Gamma-ray Space Telescope have helped unravel some of the biggest mysteries of the cosmos. And Fermi is far from finished!

image

On June 11, 2008, at Cape Canaveral in Florida, the countdown started for Fermi, which was called the Gamma-ray Large Area Space Telescope (GLAST) at the time. 

The telescope was renamed after launch to honor Enrico Fermi, an Italian-American pioneer in high-energy physics who also helped develop the first nuclear reactor. 

Fermi has had many other things named after him, like Fermi’s Paradox, the Fermi National Accelerator Laboratory, the Enrico Fermi Nuclear Generating Station, the Enrico Fermi Institute, and the synthetic element fermium.

image

Photo courtesy of Argonne National Laboratory

The Fermi telescope measures some of the highest energy bursts of light in the universe; watching the sky to help scientists answer all sorts of questions about some of the most powerful objects in the universe. 

Its main instrument is the Large Area Telescope (LAT), which can view 20% of the sky at a time and makes a new image of the whole gamma-ray sky every three hours. Fermi’s other instrument is the Gamma-ray Burst Monitor. It sees even more of the sky at lower energies and is designed to detect brief flashes of gamma-rays from the cosmos and Earth.

image

This sky map below is from 2013 and shows all of the high energy gamma rays observed by the LAT during Fermi’s first five years in space.  The bright glowing band along the map’s center is our own Milky Way galaxy!

image

So what are gamma rays? 

Well, they’re a form of light. But light with so much energy and with such short wavelengths that we can’t see them with the naked eye. Gamma rays require a ton of energy to produce — from things like subatomic particles (such as protons) smashing into each other. 

Here on Earth, you can get them in nuclear reactors and lightning strikes. Here’s a glimpse of the Seattle skyline if you could pop on a pair of gamma-ray goggles. That purple streak? That’s still the Milky Way, which is consistently the brightest source of gamma rays in our sky.

image

In space, you find that kind of energy in places like black holes and neutron stars. The raindrop-looking animation below shows a big flare of gamma rays that Fermi spotted coming from something called a blazar, which is a kind of quasar, which is different from a pulsar… actually, let’s back this up a little bit.

image

One of the sources of gamma rays that Fermi spots are pulsars. Pulsars are a kind of neutron star, which is a kind of star that used to be a lot bigger, but collapsed into something that’s smaller and a lot denser. Pulsars send out beams of gamma rays. But the thing about pulsars is that they rotate. 

So Fermi only sees a beam of gamma rays from a pulsar when it’s pointed towards Earth. Kind of like how you only periodically see the beam from a lighthouse. These flashes of light are very regular. You could almost set your watch by them!

image

Quasars are supermassive black holes surrounded by disks of gas. As the gas falls into the black hole, it releases massive amount of energy, including — you guessed it — gamma rays. Blazars are quasars that send out beams of gamma rays and other forms of light — right in our direction. 

When Fermi sees them, it’s basically looking straight down this tunnel of light, almost all the way back to the black hole. This means we can learn about the kinds of conditions in that environment when the rays were emitted. Fermi has found about 5,500 individual sources of gamma rays, and the bulk of them have been blazars, which is pretty nifty.

image

But gamma rays also have many other sources. We’ve seen them coming from supernovas where stars die and from star factories where stars are born. They’re created in lightning storms here on Earth, and our own Sun can toss them out in solar flares. 

Gamma rays were in the news last year because of something Fermi spotted at almost the same time as the National Science Foundation (NSF)’s Laser Interferometer Gravitational-Wave Observatory (LIGO) and European Gravitational Observatory’s Virgo on August 17, 2017. Fermi, LIGO, Virgo, and numerous other observatories spotted the merger of two neutron stars. It was the first time that gravitational waves and light were confirmed to come from the same source.

image

Fermi has been looking at the sky for almost 10 years now, and it’s helped scientists advance our understanding of the universe in many ways. And the longer it looks, the more we’ll learn. Discover more about how we’ll be celebrating Fermi’s achievements all year.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Loading...
End of content
No more pages to load
matthewjopdyke - Matthew J. Opdyke
Matthew J. Opdyke

Author Matthew J. Opdyke, Science Fiction and Fantasy

147 posts

Explore Tumblr Blog
Search Through Tumblr Tags