Exploration and inspiration collide head-on in our Human Exploration Rover Challenge held near Marshall Space Flight Center in Huntsville, Alabama, each April. The annual competition challenges student teams from around the world to design, build and drive a human-powered rover over a punishing half-mile course with tasks and obstacles similar to what our astronauts will likely have on missions to the Moon, Mars and beyond.
The anatomy of the rover is crucial to success. Take a look at a few of the vital systems your rover will need to survive the challenge!
A rover’s chassis is its skeleton and serves as the framework that all of the other rover systems attach to. The design of that skeleton incorporates many factors: How will your steering and braking work? Will your drivers sit beside each other, front-to-back or will they be offset? How high should they sit? How many wheels will your rover have? All of those decisions dictate the design of your rover’s chassis.
Speaking of wheels, what will yours look like? The Rover Challenge course features slick surfaces, soft dunes, rocky craters and steep hills – meaning your custom-designed wheels must be capable of handling diverse landscapes, just as they would on the Moon and Mars. Carefully cut wood and cardboard, hammer-formed metal and even 3-D printed polymers have all traversed the course in past competitions.
You’ve got your chassis design. Your wheels are good to go. Now you have to have a system to transfer the energy from your drivers to the wheels – the drivetrain. A good drivetrain will help ensure your rover crosses the finish line under the 8-minute time limit. Teams are encouraged to innovate and think outside the traditional bike chain-based systems that are often used and often fail. Exploration of the Moon and Mars will require new, robust designs to explore their surfaces. New ratchet systems and geared drivetrains explored the Rover Challenge course in 2019.
Every good rover needs a cool look. Whether you paint it your school colors, fly your country’s flag or decorate it to support those fighting cancer (Lima High School, above, was inspired by those fighting cancer), your rover and your uniform help tell your story to all those watching and cheering you on. Have fun with it!
Are you ready to conquer the Rover Challenge course? Join us in Huntsville this spring! Rover Challenge registration is open until January 16, 2020 for teams based in the United States.
If building rovers isn’t your space jam, we have other Artemis Challenges that allow you to be a part of the NASA team – check them out here.
Want to learn about our Artemis program that will land the first woman and next man on the Moon by 2024? Go here to read about how NASA, academia and industry and international partners will use innovative technologies to explore more of the lunar surface than ever before. Through collaborations with our commercial, international and academic partners, we will establish sustainable lunar exploration by 2028, using what we learn to take astronauts to Mars.
The students competing in our Human Exploration Rover Challenge are paramount to that exploration and will play a vital role in helping NASA and all of humanity explore space like we’ve never done before!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A human journey to Mars, at first glance, offers an inexhaustible amount of complexities. To bring a mission to the Red Planet from fiction to fact, our Human Research Program has organized hazards astronauts will encounter on a continual basis into five classifications.
The first hazard of a human mission to Mars is also the most difficult to visualize because, well, space radiation is invisible to the human eye. Radiation is not only stealthy, but considered one of the most menacing of the five hazards.
Above Earth’s natural protection, radiation exposure increases cancer risk, damages the central nervous system, can alter cognitive function, reduce motor function and prompt behavioral changes. To learn what can happen above low-Earth orbit, we study how radiation affects biological samples using a ground-based research laboratory.
Exploration to the Moon and Mars will expose astronauts to five known hazards of spaceflight, including radiation. To learn more, and find out what our Human Research Program is doing to protect humans in space, check out the "Hazards of Human Spaceflight" website or check out this week’s episode of “Houston We Have a Podcast,” in which our host Gary Jordan further dives into the threat of radiation with Zarana Patel, a radiation lead scientist at the Johnson Space Center.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Hello! When preparing for a mission what are your primary concerns for the astronauts safety- what do you focus on with the most intensity to feel confident in sending a crew up?
In temperatures that drop below -20 degrees Fahrenheit, along a route occasionally blocked by wind-driven ice dunes, a hundred miles from any other people, a team led by two of our scientists are surveying an unexplored stretch of Antarctic ice.
They’ve packed extreme cold-weather gear and scientific instruments onto sleds pulled by two tank-like snow machines called PistenBullys, and after a stop at the South Pole Station (seen in this image), they began a two- to three-week traverse.
The 470-mile expedition in one of the most barren landscapes on Earth will ultimately provide the best assessment of the accuracy of data collected from space by the Ice Cloud and land Elevation Satellite-2 (ICESat-2), set to launch in 2018.
This traverse provides an extremely challenging way to assess the accuracy of the data. ICESat-2’s datasets are going to tell us incredible things about how Earth’s ice is changing, and what that means for things like sea level rise.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Fermi Gamma-ray Space Telescope is a satellite in low-Earth orbit that detects gamma rays from exotic objects like black holes, neutron stars and fast-moving jets of hot gas. For 11 years Fermi has seen some of the highest-energy bursts of light in the universe and is helping scientists understand where gamma rays come from.
Confused? Don’t be! We get a ton of questions about Fermi and figured we'd take a moment to answer a few of them here.
The Fermi telescope was named after Enrico Fermi in recognition of his work on how the tiny particles in space become accelerated by cosmic objects, which is crucial to understanding many of the objects that his namesake satellite studies.
Enrico Fermi was an Italian physicist and Nobel Prize winner (in 1938) who immigrated to the United States to be a professor of physics at Columbia University, later moving to the University of Chicago.
Original image courtesy Argonne National Laboratory
Over the course of his career, Fermi was involved in many scientific endeavors, including the Manhattan Project, quantum theory and nuclear and particle physics. He even engineered the first-ever atomic reactor in an abandoned squash court (squash is the older, English kind of racquetball) at the University of Chicago.
There are a number of other things named after Fermi, too: Fermilab, the Enrico Fermi Nuclear Generating Station, the Enrico Fermi Institute and more. (He’s kind of a big deal in the physics world.)
Fermi even had something to say about aliens! One day at lunch with his buddies, he wondered if extraterrestrial life existed outside our solar system, and if it did, why haven't we seen it yet? His short conversation with friends sparked decades of research into this idea and has become known as the Fermi Paradox — given the vastness of the universe, there is a high probability that alien civilizations exist out there, so they should have visited us by now.
No. Although both are named after Enrico Fermi, the Fermi telescope and the Fermi Paradox have nothing to do with one another.
Fermi does not look for aliens, extraterrestrial life or anything of the sort! If aliens were to come our way, Fermi would be no help in identifying them, and they might just slip right under Fermi’s nose. Unless, of course, those alien spacecraft were powered by processes that left behind traces of gamma rays.
Fermi detects gamma rays, the highest-energy form of light, which are often produced by events so far away the light can take billions of years to reach Earth. The satellite sees pulsars, active galaxies powered by supermassive black holes and the remnants of exploding stars. These are not your everyday stars, but the heavyweights of the universe.
No. Fermi DETECTS gamma rays using its two instruments, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM).
The LAT sees about one-fifth of the sky at a time and records gamma rays that are millions of times more energetic than visible light. The GBM detects lower-energy emissions, which has helped it identify more than 2,000 gamma-ray bursts – energetic explosions in galaxies extremely far away.
The highest-energy gamma ray from a gamma-ray burst was detected by Fermi’s LAT, and traveled 3.8 billion light-years to reach us from the constellation Leo.
Nope. In movies and comic books, the hero has a tragic backstory and a brush with death, only to rise out of some radioactive accident stronger and more powerful than before. In reality, that much radiation would be lethal.
In fact, as a form of radiation, gamma rays are dangerous for living cells. If you were hit with a huge amount of gamma radiation, it could be deadly — it certainly wouldn’t be the beginning of your superhero career.
Thankfully, our lovely planet has an amazing protector from gamma radiation: an atmosphere. That is why the Fermi telescope is in orbit; it’s easier to detect gamma rays in space!
Gamma-ray bursts are so far away that they pose no threat to Earth. Fermi sees gamma-ray bursts because the flash of gamma rays they release briefly outshines their entire home galaxies, and can sometimes outshine everything in the gamma-ray sky.
If a habitable planet were too close to one of these explosions, it is possible that the jet emerging from the explosion could wipe out all life on that planet. However, the probability is extremely low that a gamma-ray burst would happen close enough to Earth to cause harm. These events tend to occur in very distant galaxies, so we’re well out of reach.
We hope that this has helped to clear up a few misconceptions about the Fermi Gamma-ray Space Telescope. It’s a fantastic satellite, studying the craziest extragalactic events and looking for clues to unravel the mysteries of our universe!
Now that you know the basics, you probably want to learn more! Follow the Fermi Gamma-ray Space Telescope on Twitter (@NASAFermi) or Facebook (@nasafermi), and check out more awesome stuff on our Fermi webpage.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Science is a shared endeavor. We learn more when we work together. Today, July 18, we’re using three different space telescopes to observe the same star/planet system!
As our Transiting Exoplanet Survey Satellite (TESS) enters its third year of observations, it's taking a new look at a familiar system this month. And today it won't be alone. Astronomers are looking at AU Microscopii, a young fiery nearby star – about 22 million years old – with the TESS, NICER and Swift observatories.
TESS will be looking for more transits – the passage of a planet across a star – of a recently-discovered exoplanet lurking in the dust of AU Microscopii (called AU Mic for short). Astronomers think there may be other worlds in this active system, as well!
Our Neutron star Interior Composition Explorer (NICER) telescope on the International Space Station will also focus on AU Mic today. While NICER is designed to study neutron stars, the collapsed remains of massive stars that exploded as supernovae, it can study other X-ray sources, too. Scientists hope to observe stellar flares by looking at the star with its high-precision X-ray instrument.
Scientists aren't sure where the X-rays are coming from on AU Mic — it could be from a stellar corona or magnetic hot spots. If it's from hot spots, NICER might not see the planet transit, unless it happens to pass over one of those spots, then it could see a big dip!
A different team of astronomers will use our Neil Gehrels Swift Observatory to peer at AU Mic in X-ray and UV to monitor for high-energy flares while TESS simultaneously observes the transiting planet in the visible spectrum. Stellar flares like those of AU Mic can bathe planets in radiation.
Studying high-energy flares from AU Mic with Swift will help us understand the flare-rate over time, which will help with models of the planet’s atmosphere and the system’s space weather. There's even a (very) small chance for Swift to see a hint of the planet's transit!
The flares that a star produces can have a direct impact on orbiting planets' atmospheres. The high-energy photons and particles associated with flares can alter the chemical makeup of a planet's atmosphere and erode it away over time.
Another time TESS teamed up with a different spacecraft, it discovered a hidden exoplanet, a planet beyond our solar system called AU Mic b, with the now-retired Spitzer Space Telescope. That notable discovery inspired our latest poster! It’s free to download in English and Spanish.
Spitzer’s infrared instrument was ideal for peering at dusty systems! Astronomers are still using data from Spitzer to make discoveries. In fact, the James Webb Space Telescope will carry on similar study and observe AU Mic after it launches next year.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Just like your phone needs Wi-Fi or data services to text or call – NASA spacecraft need communication services.
Giant antennas on Earth and a fleet of satellites in space enable missions to send data and images back to our home planet and keep us in touch with our astronauts in space. Using this data, scientists and engineers can make discoveries about Earth, the solar system, and beyond. The antennas and satellites make up our space communications networks: the Near Space Network and Deep Space Network.
Check out the top ten moments from our space comm community:
1. Space communication networks helped the Artemis I mission on its historic journey to the Moon. From the launch pad to the Moon and back, the Near Space Network and Deep Space Network worked hand-in-hand to seamlessly support Artemis I. These networks let mission controllers send commands up to the spacecraft and receive important spacecraft health data, as well as incredible images of the Moon and Earth.
The Pathfinder Technology Demonstration 3 spacecraft with hosted TeraByte InfraRed Delivery (TBIRD) payload communicating with laser links down to Earth. Credit: NASA/Ames Research Center
2. Spacecraft can range in size – from the size of a bus to the size of a cereal box. In May 2022, we launched a record-breaking communication system the size of a tissue box. TBIRD showcases the benefits of a laser communications system, which uses infrared light waves rather than radio waves to communicate more data at once. Just like we have upgraded from 3G to 4G to 5G on our phones, we are upgrading its space communications capabilities by implementing laser comms!
3. The Deep Space Network added a new 34-meter (111-foot) antenna to continue supporting science and exploration missions investigating our solar system and beyond. Deep Space Station 53 went online in February 2022 at our Madrid Deep Space Communications Complex. It is the fourth of six antennas being added to expand the network’s capacity.
4. You’ve probably seen in the news that there are a lot of companies working on space capabilities. The Near Space Network is embracing the aerospace community’s innovative work and seeking out multiple partnerships. In 2022, we met with over 300 companies in hopes of beginning new collaborative efforts and increasing savings.
5. Similar to TBIRD, we're developing laser comms for the International Space Station. The terminal will show the benefits of laser comms while using a new networking technique called High Delay/Disruption Tolerant Networking that routes data four times faster than current systems. This year, engineers tested and proved the capability in a lab.
6. In 2021, we launched the James Webb Space Telescope, a state-of-the-art observatory to take pictures of our universe. This year, the Deep Space Network received the revolutionary first images of our solar system from Webb. The telescope communicates with the network’s massive antennas at three global complexes in Canberra, Australia; Madrid, Spain; and Goldstone, California.
7. Just like we use data services on our phone to communicate, we'll do the same with future rovers and astronauts exploring the Moon. In 2022, the Lunar LTE Studies project, or LunarLiTES, team conducted two weeks of testing in the harsh depths of the Arizona desert, where groundbreaking 4G LTE communications data was captured in an environment similar to the lunar South Pole. We're using this information to determine the best way to use 4G and 5G networking on the Moon.
8. A new Near Space Network antenna site was unveiled in Matjiesfontein, South Africa. NASA and the South African Space Agency celebrated a ground-breaking at the site of a new comms antenna that will support future Artemis Moon missions. Three ground stations located strategically across the globe will provide direct-to-Earth communication and navigation capabilities for lunar missions.
9. Quantum science aims to better understand the world around us through the study of extremely small particles. April 14, 2022, marked the first official World Quantum Day celebration, and we participated alongside other federal agencies and the National Quantum Coordination Office. From atomic clocks to optimizing laser communications, quantum science promises to greatly improve our advances in science, exploration, and technology.
10. We intentionally crashed a spacecraft into an asteroid to test technology that could one day be used to defend Earth from asteroids. The Double Asteroid Redirection Test, or DART, mission successfully collided with the asteroid Dimorphos at a rate of 4 miles per second (6.1 kilometers per second), with real-time video enabled by the Deep Space Network. Alongside communications and navigation support, the global network also supports planetary defense by tracking near-Earth objects.
We look forward to many more special moments connecting Earth to space in the coming year.
Make sure to follow us on Tumblr for your regular dose of space!
Concerning the new telescope -out of curiosity- what is the maximum distance it can view planets, galaxies, objects, anything up to -in terms of common/metric measurement, and/or years (if applicable) etc.? -Rose
Meet BurstCube! This shoebox-sized satellite is designed to study the most powerful explosions in the cosmos, called gamma-ray bursts. It detects gamma rays, the highest-energy form of light.
BurstCube may be small, but it had a huge journey to get to space.
First, BurstCube was designed and built at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Here you can see Julie Cox, an early career engineer, working on BurstCube’s gamma-ray detecting instrument in the Small Satellite Lab at Goddard.
BurstCube is a type of spacecraft called a CubeSat. These tiny missions give early career engineers and scientists the chance to learn about mission development — as well as do cool science!
Then, after assembling the spacecraft, the BurstCube team took it on the road to conduct a bunch of tests to determine how it will operate in space. Here you can see another early career engineer, Kate Gasaway, working on BurstCube at NASA’s Wallops Flight Facility in Virginia.
She and other members of the team used a special facility there to map BurstCube’s magnetic field. This will help them know where the instrument is pointing when it’s in space.
The next stop was back at Goddard, where the team put BurstCube in a vacuum chamber. You can see engineers Franklin Robinson, Elliot Schwartz, and Colton Cohill lowering the lid here. They changed the temperature inside so it was very hot and then very cold. This mimics the conditions BurstCube will experience in space as it orbits in and out of sunlight.
Then, up on a Goddard rooftop, the team — including early career engineer Justin Clavette — tested BurstCube’s GPS. This so-called open-sky test helps ensure the team can locate the satellite once it’s in orbit.
The next big step in BurstCube’s journey was a flight to Houston! The team packed it up in a special case and took it to the airport. Of course, BurstCube got the window seat!
Once in Texas, the BurstCube team joined their partners at Nanoracks (part of Voyager Space) to get their tiny spacecraft ready for launch. They loaded the satellite into a rectangular frame called a deployer, along with another small satellite called SNoOPI (Signals of Opportunity P-band Investigation). The deployer is used to push spacecraft into orbit from the International Space Station.
From Houston, BurstCube traveled to Cape Canaveral Space Force Station in Florida, where it launched on SpaceX’s 30th commercial resupply servicing mission on March 21, 2024. BurstCube traveled to the station along with some other small satellites, science experiments, as well as a supply of fresh fruit and coffee for the astronauts.
A few days later, the mission docked at the space station, and the astronauts aboard began unloading all the supplies, including BurstCube!
And finally, on April 18, 2024, BurstCube was released into orbit. The team will spend a month getting the satellite ready to search the skies for gamma-ray bursts. Then finally, after a long journey, this tiny satellite can embark on its big mission!
BurstCube wouldn’t be the spacecraft it is today without the input of many early career engineers and scientists. Are you interested in learning more about how you can participate in a mission like this one? There are opportunities for students in middle and high school as well as college!
Keep up on BurstCube’s journey with NASA Universe on X and Facebook. And make sure to follow us on Tumblr for your regular dose of space!
Not long after midnight on Dec. 7, 1972, the last crewed mission to the Moon, Apollo 17, lifted off with three astronauts: Eugene Cernan, Harrison Schmitt, and Ronald Evans.
Experience the Apollo 17 launch and follow the mission in real time.
Let’s meet the astronauts who made the final Apollo trip to the Moon, including the first scientist-astronaut.
Gene Cernan: In 1972, Apollo 17 Mission Commander Eugene A. Cernan had two space flights under his belt, Gemini 9 in June 1966, and Apollo 10 in May 1969. He was a naval aviator, electrical and aeronautical engineer and fighter pilot.
Ron Evans: Apollo 17 Command Module Pilot Ronald E. Evans was selected as a member of the 4th group of NASA astronauts in 1966. Like Cernan, he was an electrical and aeronautical engineer, and naval aviator before his assignment to the Apollo 17 crew.
Harrison (Jack) Schmitt: Lunar Module Pilot Dr. Harrison (Jack) Schmitt joined NASA as a member of the first group of scientist-astronauts in 1965. Before working for NASA, Schmitt was a geologist at the USGS Astrogeology Center. He was on the backup crew for Apollo 15 before being selected for the prime crew of Apollo 17. He became the first of the scientist-astronauts to go to space and the 12th human to walk on the Moon.
“The Blue Marble,” one of the most reproduced images in history, was taken 50 years ago on Dec. 7, 1972 by the Apollo 17 crew as they made their way to the Moon.
NASA astronauts have an array of menu items to stay well fed and hydrated on missions. For Apollo 17, the menus allocated around 2,500 calories per day for each astronaut. They included:
Bacon Squares
Peanut Butter Sandwiches
Frankfurters
Lobster Bisque
Like anything going to space, weight and containment matter. That's why the Apollo 17 menu included plenty of soups and puddings.
On Dec. 11, 2022, the Artemis I mission will be splashing down on Earth after its 25.5-day mission. At 2:55 p.m. 50 years prior, the Apollo 17 lunar module (LM) landed on the Moon, with Commander Gene Cernan and LM Pilot Harrison Schmitt on board. Ron Evans remained in the Command and Service Module (CSM) orbiting the Moon.
Experience the landing.
One of the first tasks the Apollo 17 crew did on their first moonwalk was to plant the American flag. There’s no wind on the Moon, but that doesn’t mean the flag has to droop. Did you know that a horizontal rod with a latch makes the flag appear to be flying in the wind? Gene Cernan carefully composed this photo to get Schmitt, the flag, and the Earth in a single shot.
So, is the flag still there? Images of the Apollo 17 landing site from the Lunar Reconnaissance Orbiter Camera show that in 2011 the flag was still standing and casting a shadow!
During Apollo 17, the Lunar Rover Vehicle (LRV), nicknamed the Moon buggy, logged the farthest distance from the Lunar Module of any Apollo mission, about 4.7 miles (7.5 km).
As a precaution, the LRV had a walk-back limit in the event of an issue; astronauts had to have enough resources to walk back to the lunar module if need be.
The right rear fender extension of the LRV (Moon buggy) was torn off, kicking up dust as the crew drove, reducing visibility. The crew made a resourceful repair using duct tape and maps.
For LRV fans, visiting an LRV driven on the Moon is a bit difficult since all three LRVs used on the Apollo 15, 16, and 17 missions were left on the Moon. But you can find an LRV used for training at the National Air and Space Museum in Washington. Read more about the LRV.
After the first lunar EVA, Apollo 17 astronaut Harrison Schmitt reported that he suffered from “lunar hay fever” in reaction to the lunar dust. Unlike Earth’s dust particles which are rounded, Moon dust particles are sharp and abrasive, irritating astronaut eyes, nasal passages, and lungs.
Curious about how Moon dust feels and smells? Find out!
After his return to Earth, Apollo 17 astronaut Harrison Schmitt (on the right) described his time on the Moon:
“Working on the Moon is a lot of fun. It’s like walking around on a giant trampoline all the time and you’re just as strong as you were here on Earth, but you don’t weigh as much.”
After 12 days and 14 hours in space, the Apollo 17 astronauts splashed down in the Pacific Ocean at 2:25 p.m. EST on Dec. 19, 1972. It was the longest of all the Apollo missions, with the most photos taken. A recovery team was waiting on the USS Ticonderoga just 4 miles (6.4 km) away to pick up the astronauts, the lunar samples, and the Crew Module.
NASA’s Artemis Program has taken its first steps to sending humans back to the Moon with Artemis I, currently on its way back to Earth. The program plans to land humans, including the first women and person of color, on the Moon’s south polar region with its Artemis III mission, currently slated to launch in 2025.
Is aerospace history your cup of tea? Be sure to check out more from NASA’s past missions at www.nasa.gov/history.
Make sure to follow us on Tumblr for your regular dose of space!
It’s no secret the Sun affects us here on Earth in countless ways, from causing sunburns to helping our houseplants thrive. The Sun affects other objects in space, too, like asteroids! It can keep them in place. It can move them. And it can even shape them.
Asteroids embody the story of our solar system’s beginning. Jupiter’s Trojan asteroids, which orbit the Sun on the same path as the gas giant, are no exception. The Trojans are thought to be left over from the objects that eventually formed our planets, and studying them might offer clues about how the solar system came to be.
Over the next 12 years, NASA’s Lucy mission will visit eight asteroids—including seven Trojans— to help answer big questions about planet formation and the origins of our solar system. It will take the spacecraft about 3.5 years to reach its first destination.
How does the Sun affect what Lucy might find?
Credits: Astronomical Institute of CAS/Petr Scheirich
The Sun makes up 99.8% of the solar system’s mass and exerts a strong gravitational force as a result. In the case of the Trojan asteroids that Lucy will visit, their very location in space is dictated in part by the Sun’s gravity. They are clustered at two Lagrange points. These are locations where the gravitational forces of two massive objects—in this case the Sun and Jupiter—are balanced in such a way that smaller objects (like asteroids or satellites) stay put relative to the larger bodies. The Trojans lead and follow Jupiter in its orbit by 60° at Lagrange points L4 and L5.
The Sun can move and spin asteroids with light! Like many objects in space, asteroids rotate. At any given moment, the Sun-facing side of an asteroid absorbs sunlight while the dark side sheds energy as heat. When the heat escapes, it creates an infinitesimal amount of thrust, pushing the asteroid ever so slightly and altering its rotational rate. The Trojans are farther from the Sun than other asteroids we’ve studied before, and it remains to be seen how sunlight affects their movement.
The Sun can break asteroids, too. Rocks expand as they warm and contract when they cool. This repeated fluctuation can cause them to crack. The phenomenon is more intense for objects without atmospheres, such as asteroids, where temperatures vary wildly. Therefore, even though the Trojans are farther from the Sun than rocks on Earth, they’ll likely show more signs of thermal fracturing.
Like everything in our solar system, asteroids are battered by the solar wind, a steady stream of particles, magnetic fields, and radiation that flows from the Sun. For the most part, Earth’s magnetic field protects us from this bombardment. Without magnetic fields or atmospheres of their own, asteroids receive the brunt of the solar wind. When incoming particles strike an asteroid, they can kick some material off into space, changing the fundamental chemistry of what’s left behind.
Follow along with Lucy’s journey with NASA Solar System on Instagram, Facebook, and Twitter, and be sure to tune in for the launch at 5 a.m. EDT (09:00 UTC) on Saturday, Oct. 16 at nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space!
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts