Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

Stars, Sea, and Smoke from the ISS: Tournament Earth 2021

We started Tournament Earth with 32 photos taken by astronauts from the Interantional Space Station and now we are down to 8. All of the #1 seeds are gone. Two #8 seeds are dominating their groups. Who will win? Let's take a closer look at the competitors still in the game. Then remember to vote for your favorites. The champion will be announced on April 13, 2021.

Stars in Motion vs. Cleveland Volcano

This matchup pits smoke against stars, but both have interesting stories.

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

The International Space Station (ISS) is constantly in motion. For astronaut photographers on board, that motion has consequences. For one, it makes it challenging to take photos. The same motion makes it possible to shoot spectacular photos like the one above. The image is compiled from a series of photographs taken by astronaut Don Pettit while he was onboard the ISS in April 2012. This composite was made from more than 72 individual long-exposure photographs taken over several minutes as the ISS traveled over the Caribbean Sea, across South America, and over the South Atlantic Ocean.

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

Astronaut Jeff Williams was the first to witness activity at the Cleveland Volcano on May 3, 2006. The Cleveland Volcano is one of the most active in the Aleutian Islands, which extend west-southwest from the Alaska mainland. It is a stratovolcano composed of alternating layers of hardened lava, compacted volcanic ash, and volcanic rocks. The event proved to be short-lived; two hours later, the plume had completely detached from the volcano. The ash cloud height could have been as high as 6,000 meters (20,000 feet) above sea level.

Stargazing from the ISS vs. Cruising Past the Aurora Borealis

This is the most stellar matchup of the tournament, literally. Two beloved star pictures face off in what will be one of the most difficult choices of the tournament.

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

An astronaut took this broad, short-lens photograph of Earth’s night lights while looking out over the remote reaches of the central equatorial Pacific Ocean. The ISS was passing over the island nation of Kiribati at the time, about 2600 kilometers (1,600 miles) south of Hawaii. Scientists identified the pattern of stars in the photo as our Milky Way galaxy (looking toward its center). The dark patches are dense dust clouds in an inner spiral arm of our galaxy; such clouds can block our view of stars toward the center. The curvature of the Earth crosses the center of the image and is illuminated by a variety of airglow layers in orange, green, and red.

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

Commonly known as the northern lights, these colorful ribbons of light appear to dance in the sky over the planet’s high latitudes, attracting sky chasers and photographers. Astronaut Randy “Komrade” Bresnik shot this photograph on September 15, 2017, as the space station passed over Ontario, Canada. Curtains of green—the most familiar color of auroras—dominate the light show, with hints of purple and red.

Rolling Through the Appalachians vs. Castellanus Cloud Tower

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

The Susquehanna River cuts through the folds of the Valley-and-Ridge province of the Appalachian Mountains in this photograph taken from the International Space Station by astronaut Christina Koch. The Valley-and-Ridge province is a section of the larger Appalachian Mountain Belt between the Appalachian Plateau and the Blue Ridge physiographic provinces. The northeast-southwest trending ridges are composed of Early Paleozoic sedimentary rocks. The valleys between them were made of softer rocks (limestone and shales) that were more susceptible to erosion; they are now occupied by farms.

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

An astronaut aboard the International Space Station took this photograph of a massive vertical cloud formation—known to meteorologists as cumulus castellanus—above Andros Island. The cloud name castellanus comes from the similarity to the crenellated towers or turrets of medieval castles. These clouds develop due to strong vertical air movement typically associated with thunderstorms.

Lake Van, Turkey vs. Typhoon Maysak from the Space Station

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

While orbiting on the International Space Station, astronaut Kate Rubins shot this photograph of part of Lake Van in Turkey, the largest soda or alkaline lake on Earth. Generally, soda lakes are distinguished by high concentrations of carbonate species. Lake Van is an endorheic lake—it has no outlet, so its water disappears by evaporation—with a pH of 10 and high salinity levels.

Stars, Sea, And Smoke From The ISS: Tournament Earth 2021

This photograph of super typhoon Maysak was taken by European Space Agency astronaut Samantha Cristoforetti as the International Space Station passed near the storm on March 31, 2015. The category 4 typhoon was headed for a possible landfall in the Philippines by the end of the week. It was unusual for the western Pacific to see such a strong storm so early in the year.

See all of the images and vote HERE. Follow @NASAEarth on social media for updates.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

8 years ago

Incoming! We’ve Got Science from Jupiter!

Our Juno spacecraft has just released some exciting new science from its first close flyby of Jupiter! 

image

In case you don’t know, the Juno spacecraft entered orbit around the gas giant on July 4, 2016…about a year ago. Since then, it has been collecting data and images from this unique vantage point.

image

Juno is in a polar orbit around Jupiter, which means that the majority of each orbit is spent well away from the gas giant. But once every 53 days its trajectory approaches Jupiter from above its north pole, where it begins a close two-hour transit flying north to south with its eight science instruments collecting data and its JunoCam camera snapping pictures.

image

Space Fact: The download of six megabytes of data collected during the two-hour transit can take one-and-a-half days!

image

Juno and her cloud-piercing science instruments are helping us get a better understanding of the processes happening on Jupiter. These new results portray the planet as a complex, gigantic, turbulent world that we still need to study and unravel its mysteries.

So what did this first science flyby tell us? Let’s break it down...

1. Tumultuous Cyclones

image

Juno’s imager, JunoCam, has showed us that both of Jupiter’s poles are covered in tumultuous cyclones and anticyclone storms, densely clustered and rubbing together. Some of these storms as large as Earth!

image

These storms are still puzzling. We’re still not exactly sure how they formed or how they interact with each other. Future close flybys will help us better understand these mysterious cyclones. 

image

Seen above, waves of clouds (at 37.8 degrees latitude) dominate this three-dimensional Jovian cloudscape. JunoCam obtained this enhanced-color picture on May 19, 2017, at 5:50 UTC from an altitude of 5,500 miles (8,900 kilometers). Details as small as 4 miles (6 kilometers) across can be identified in this image.

image

An even closer view of the same image shows small bright high clouds that are about 16 miles (25 kilometers) across and in some areas appear to form “squall lines” (a narrow band of high winds and storms associated with a cold front). On Jupiter, clouds this high are almost certainly comprised of water and/or ammonia ice.

2. Jupiter’s Atmosphere

Juno’s Microwave Radiometer is an instrument that samples the thermal microwave radiation from Jupiter’s atmosphere from the tops of the ammonia clouds to deep within its atmosphere.

image

Data from this instrument suggest that the ammonia is quite variable and continues to increase as far down as we can see with MWR, which is a few hundred kilometers. In the cut-out image below, orange signifies high ammonia abundance and blue signifies low ammonia abundance. Jupiter appears to have a band around its equator high in ammonia abundance, with a column shown in orange.

image

Why does this ammonia matter? Well, ammonia is a good tracer of other relatively rare gases and fluids in the atmosphere...like water. Understanding the relative abundances of these materials helps us have a better idea of how and when Jupiter formed in the early solar system.

This instrument has also given us more information about Jupiter’s iconic belts and zones. Data suggest that the belt near Jupiter’s equator penetrates all the way down, while the belts and zones at other latitudes seem to evolve to other structures.

3. Stronger-Than-Expected Magnetic Field

image

Prior to Juno, it was known that Jupiter had the most intense magnetic field in the solar system…but measurements from Juno’s magnetometer investigation (MAG) indicate that the gas giant’s magnetic field is even stronger than models expected, and more irregular in shape.

image

At 7.766 Gauss, it is about 10 times stronger than the strongest magnetic field found on Earth! What is Gauss? Magnetic field strengths are measured in units called Gauss or Teslas. A magnetic field with a strength of 10,000 Gauss also has a strength of 1 Tesla.  

image

Juno is giving us a unique view of the magnetic field close to Jupiter that we’ve never had before. For example, data from the spacecraft (displayed in the graphic above) suggests that the planet’s magnetic field is “lumpy”, meaning its stronger in some places and weaker in others. This uneven distribution suggests that the field might be generated by dynamo action (where the motion of electrically conducting fluid creates a self-sustaining magnetic field) closer to the surface, above the layer of metallic hydrogen. Juno's orbital track is illustrated with the black curve. 

4. Sounds of Jupiter

Juno also observed plasma wave signals from Jupiter’s ionosphere. This movie shows results from Juno's radio wave detector that were recorded while it passed close to Jupiter. Waves in the plasma (the charged gas) in the upper atmosphere of Jupiter have different frequencies that depend on the types of ions present, and their densities. 

Mapping out these ions in the jovian system helps us understand how the upper atmosphere works including the aurora. Beyond the visual representation of the data, the data have been made into sounds where the frequencies and playback speed have been shifted to be audible to human ears.

5. Jovian “Southern Lights”

image

The complexity and richness of Jupiter’s “southern lights” (also known as auroras) are on display in this animation of false-color maps from our Juno spacecraft. Auroras result when energetic electrons from the magnetosphere crash into the molecular hydrogen in the Jovian upper atmosphere. The data for this animation were obtained by Juno’s Ultraviolet Spectrograph. 

image

During Juno’s next flyby on July 11, the spacecraft will fly directly over one of the most iconic features in the entire solar system – one that every school kid knows – Jupiter’s Great Red Spot! If anybody is going to get to the bottom of what is going on below those mammoth swirling crimson cloud tops, it’s Juno.

image

Stay updated on all things Juno and Jupiter by following along on social media: Twitter | Facebook | YouTube | Tumblr

Learn more about the Juno spacecraft and its mission at Jupiter HERE.


Tags
8 years ago

The United Launch Alliance’s Atlas V rocket carrying the Orbital ATK Cygnus module rolls to Cape Canaveral Air Force Station's Launch Pad 41 in this time-lapse video. The rollout is in preparation for the Orbital ATK CRS-7 mission to deliver supplies to the International Space Station.

Launch is currently scheduled for 11:11 a.m. EDT, watch live coverage: http://www.nasa.gov/live 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What are three things you would want everyone to know about your work?


Tags
7 years ago

Astronaut Journal Entry - Week 3

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

Week three. The time is flying by. The SpaceX Dragon cargo craft is 80% loaded. This has been a big effort for the crew as well as our specialists on the ground. Tracking a large matrix of storage locations, special requirements and loading locations is a nightmare, but our team on the ground made it look easy. 

image

Our crew is becoming more versatile and now flexes between operations and science tasking with what is seemingly just a flick of a switch. I had the opportunity to set up our Microgravity Science Glovebox for the Trans-Alloy experiment. Unfortunately, the team had to abort the science run due to high temperatures in the glovebox. 

image

Tomorrow morning, we will remove the science hardware, remove the cooling plugs, and set it all back up again. Reworks like this don’t bother me, and I am happy to do what is needed to reach success. We are on, and sometimes beyond, the frontline of science where lines between science, engineering and operations become very blurry and complex. We have to be flexible!  The International Space Station (ISS) has now entered its 20th year of operations. What an engineering marvel. As with any aging program, we have accumulated an expanse of experience operating in space. As an engineering community, we are much smarter about operating in space than we were 30 years ago when we designed ISS. I will be very encouraged to see our community apply lessons learned as we create new systems to require less training, less maintenance and less logistics.

image

I’ve managed to take a few moments over the last week to take some pictures of Earth. Sunrises are the most beautiful part of the day. Out of total darkness, a thin blue ring begins to form that highlights the Earth’s circumference. At this moment, you can really see how thin our atmosphere is. Within a few minutes, the sun rises on station and highlights the docked vehicles while Earth just below is still in night’s shadow. A few minutes later, ISS is over brightly-lighted ground and water, providing a fresh view of the features below. The promise of a new day is real!

image

The crew managed to have a movie night last night, which provided some good fun and camaraderie. This was a welcome break from the busy routine we endure. Unfortunately, today, I woke to hear that astronaut and moonwalker John Young had passed away. And I also learned that a good friend from the Navy had passed away after a challenging battle with cancer. When he learned he had cancer two years ago, he decided to ignite the afterburners and live every day like there was no tomorrow…he was just as successful in his final days as he was in his previous 50 years. To two remarkable American heroes, thank you for all you have sacrificed and thank you for a lifetime of inspiration. Fair winds and following seas.

Find more ‘Captain’s Log’ entries HERE. 

Follow NASA astronaut Scott Tingle on Instagram and Twitter. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   


Tags
9 years ago

Chasing Storms at 17,500mph

Flying 250 miles above the Earth aboard the International Space Station has given me the unique vantage point from which to view our planet. Spending a year in space has given me the unique opportunity to see a wide range of spectacular storm systems in space and on Earth. 

The recent blizzard was remarkably visible from space. I took several photos of the first big storm system on Earth of year 2016 as it moved across the East Coast, Chicago and Washington D.C. Since my time here on the space station began in March 2015, I’ve been able to capture an array of storms on Earth and in space, ranging from hurricanes and dust storms to solar storms and most recently a rare thunder snowstorm.

Chasing Storms At 17,500mph

Blizzard 2016

Chasing Storms At 17,500mph

Hurricane Patricia 2015

Chasing Storms At 17,500mph

Hurricane Joaquin 2015

Chasing Storms At 17,500mph

Dust Storm in the Red Sea 2015

Chasing Storms At 17,500mph

Dust Storm of Gobi Desert 2015

Chasing Storms At 17,500mph

Aurora Solar Storm 2015

Chasing Storms At 17,500mph

Aurora Solar Storm 2016

Chasing Storms At 17,500mph

Thunderstorm over Italy 2015

Chasing Storms At 17,500mph

Lightning and Aurora 2016

Chasing Storms At 17,500mph

Rare Thunder Snowstorm 2016

Follow my Year In Space on Twitter, Facebook and Instagram.

7 years ago

Let’s Talk About Food...in Space!

It’s Thanksgiving time...which means you’re probably thinking about food...

Ever wonder what the astronauts living and working on the International Space Station eat during their time 250 miles above the Earth? There’s no microwave, but they get by using other methods.

Here are some fun facts about astronaut food…

image

Astronauts are assigned their own set of silverware to use during their mission (they can keep it afterward too). Without a dishwasher in orbit, they use special wipes to sterilize their set between uses, but it’s still better for everyone if they keep track of and use their own! So many sets of silverware were ordered during the space shuttle program that crews on the space station today still use silverware engraved with the word “shuttle” on them! So #retro.

image

You probably know that astronauts use tortillas instead of bread to avoid crumbs floating everywhere. Rodolfo Neri Vela, a payload specialist from Mexico, who flew on the space shuttle in 1985, introduced tortillas to the space food system. Back then, we would buy fresh tortillas the day before launch to send on the 8-10 day space shuttle missions.

image

We then learned how to reduce the water activity when formulating tortillas, which coupled with the reduction of oxygen during packaging would prevent the growth of mold and enable them to last for longer shuttle missions. Now, we get tortillas from the military. In August 2017, acting NASA Administrator Robert Lightfoot ate a meal that included tortillas from 2015!

image

Our food menu is mostly all made from scratch so it can meet the requirements of the nutrition team and ensure astronauts eat enough fruits and vegetables. The space station is stocked with a standard menu that includes a mix of the more than 200 food and drink options available. This ensures lots of variety for the station crews but not too many of each individual item.

image

The food is packaged into bulk overwrap bags, referred to as BOBs, which are packed into cargo transfer bags for delivery to the space station. Each astronaut also gets to bring nine personalized BOBs for a mission, each containing up to 60 food and drink options so they can include more of their favorites – or choose to send a few specific items for everyone to share on a particular holiday like Thanksgiving. As a result, the crew members often share and swap their food to get more variety. Astronauts also can include any food available at the grocery store as long as it has an 18-month shelf life at room temperature and meets the microbiological requirements.

image

Fresh fruit and vegetables are a special treat for astronauts, so nearly every cargo resupply mission includes fresh fruit and veggies – and sometimes ice cream!

image

The Dragon spacecraft has freezers to bring science samples back to Earth. If there is space available on its way to orbit, the ground crew may fill the freezer with small cups of ice cream or ice cream bars.

image

Some food arrives freeze-dried, and the astronauts rehydrate it by inserting a specific amount of hot or ambient water from a special machine.

Other food comes ready to eat but needs to be reheated, which crew members do on a hot-plate like device. We recently also sent an oven style food warmer to station for the crew to use. And of course, some food like peanuts just get packaged for delivery and are ready to eat as soon as the package is opened!

image

Our nutritional biochemists have discovered that astronauts who eat more fish in space lost less bone, which is one of the essential problems for astronauts to overcome during extended stays in space. In the limited area aboard the space shuttle, not all crew members loved it when their coworkers ate the (aromatic) fish dishes, but now that the space station is about the size of a six-bedroom house, that’s not really a problem.

image

Astronauts on station have had the opportunity to grow (and eat!) a modest amount of fresh vegetables since the first lettuce harvest in August 2015, with new crops growing now and more coming soon. Crew members have been experimenting using the Veggie growth chamber, and soon plant research will also occur in the new Advanced Plant Habitat, which is nearly self-sufficient and able to control every aspect of the plant environment! 

Growing food in space will be an important component of future deep space missions, and our nutritionists are working with these experiments to ensure they also are nutritious and safe for the crew to eat.

Thanksgiving in Space

image

The crew on the space station will enjoy Thanksgiving together. Here’s a look at their holiday menu: 

Turkey

Mashed Potatoes

Cornbread Stuffing

Candied Yams

Cran-Apple Dessert

Learn more about growing food on the space station HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

See Why Our Researchers Explore Earth's Extreme and Remote Environments

image

When we talk about exploration in far-flung places, you might think of space telescopes taking images of planets outside our solar system, or astronauts floating on the International Space Station. 

image

But did you know our researchers travel to some of Earth's most inaccessible and dangerous places, too? 

image

Two scientists working with the ICESat-2 mission just finished a trek from the South Pole to latitude 88 south, a journey of about 450 miles. They had to travel during the Antarctic summer - the region's warmest time, with near-constant sunshine - but the trek was still over solid ice and snow. 

image

The trip lasted 14 days, and was an important part of a process known as calibration and validation. ICESat-2 will launch this fall, and the team was taking extremely precise elevation measurements that will be used to validate those taken by the satellite. 

image

Sometimes our research in Earth's remote regions helps us understand even farther-flung locations…like other planets. 

image

Geologic features on Mars look very similar to islands and landforms created by volcanoes here on our home planet. 

image

As hot jets of magma make their way to Earth's surface, they create new rocks and land - a process that may have taken place on Mars and the Moon.

image

In 2015, our researchers walked on newly cooled lava on the Holuhraun volcano in Iceland to take measurements of the landscape, in order to understand similar processes on other rocky bodies in our solar system.

image

There may not be flowing lava in the mangrove forests in Gabon, but our researchers have to brave mosquitoes and tree roots that reach up to 15-foot high as they study carbon storage in the vegetation there.

image

The scientists take some measurements from airplanes, but they also have to gather data from the ground in one our of planet's most pristine rainforests, climbing over and around roots that can grow taller than people. They use these measurements to create a 3-D map of the ecosystem, which helps them understand how much carbon in stored in the plants. 

image

You can follow our treks to Earth’s most extreme locales on our Earth Expeditions blog.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

The Hunt for New Worlds Continues with TESS

We're getting ready to start our next mission to find new worlds! The Transiting Exoplanet Survey Satellite (TESS) will find thousands of planets beyond our solar system for us to study in more detail. It's preparing to launch from our Kennedy Space Center at Cape Canaveral in Florida.

image

Once it launches, TESS will look for new planets that orbit bright stars relatively close to Earth. We're expecting to find giant planets, like Jupiter, but we're also predicting we'll find Earth-sized planets. Most of those planets will be within 300 light-years of Earth, which will make follow-up studies easier for other observatories.

image

TESS will find these new exoplanets by looking for their transits. A transit is a temporary dip in a star's brightness that happens with predictable timing when a planet crosses between us and the star. The information we get from transits can tell us about the size of the planet relative to the size of its star. We've found nearly 3,000 planets using the transit method, many with our Kepler space telescope. That's over 75% of all the exoplanets we've found so far!

image

TESS will look at nearly the entire sky (about 85%) over two years. The mission divides the sky into 26 sectors. TESS will look at 13 of them in the southern sky during its first year before scanning the northern sky the year after.

image

What makes TESS different from the other planet-hunting missions that have come before it? The Kepler mission (yellow) looked continually at one small patch of sky, spotting dim stars and their planets that are between 300 and 3,000 light-years away. TESS (blue) will look at almost the whole sky in sections, finding bright stars and their planets that are between 30 and 300 light-years away.

image

TESS will also have a brand new kind of orbit (visualized below). Once it reaches its final trajectory, TESS will finish one pass around Earth every 13.7 days (blue), which is half the time it takes for the Moon (gray) to orbit. This position maximizes the amount of time TESS can stare at each sector, and the satellite will transmit its data back to us each time its orbit takes it closest to Earth (orange).

image

Kepler's goal was to figure out how common Earth-size planets might be. TESS's mission is to find exoplanets around bright, nearby stars so future missions, like our James Webb Space Telescope, and ground-based observatories can learn what they're made of and potentially even study their atmospheres. TESS will provide a catalog of thousands of new subjects for us to learn about and explore.

image

The TESS mission is led by MIT and came together with the help of many different partners. Learn more about TESS and how it will further our knowledge of exoplanets, or check out some more awesome images and videos of the spacecraft. And stay tuned for more exciting TESS news as the spacecraft launches!

Watch the Launch!

*April 16 Update*

Launch teams are standing down today to conduct additional Guidance Navigation and Control analysis, and teams are now working towards a targeted launch of the Transiting Exoplanet Survey Satellite (TESS) on Wednesday, April 18. The TESS spacecraft is in excellent health, and remains ready for launch. TESS will launch on a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

For more information and updates, visit: https://blogs.nasa.gov/tess/

Live Launch Coverage!

TESS is now slated to launch on Wednesday, April 18 on a SpaceX Falcon 9 rocket from our Kennedy Space Center in Florida.

Watch HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Astronaut Journal Entry - Alarms

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

The smoke detectors have been setting off alarms. This happens routinely due to dust circulating in the modules, but every alarm is taken seriously. This is the third time that the alarm has sounded while I was using the Waste & Hygiene Compartment (toilet). I am starting to think that my actions are causing the alarms…. maybe I should change my diet?

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
8 years ago
Hello!  @Astro_Jessica Here Ready To Take Your @nasa Questions! @sxsw 

Hello!  @Astro_Jessica here ready to take your @nasa questions! @sxsw 


Tags
Loading...
End of content
No more pages to load
  • thornthallid
    thornthallid liked this · 2 years ago
  • damiminator
    damiminator liked this · 2 years ago
  • bauernbubgay
    bauernbubgay liked this · 3 years ago
  • rh35211
    rh35211 reblogged this · 3 years ago
  • creaturekin
    creaturekin liked this · 3 years ago
  • vluop
    vluop liked this · 3 years ago
  • leidila
    leidila liked this · 3 years ago
  • laura-mv
    laura-mv liked this · 3 years ago
  • afflefieplavour
    afflefieplavour reblogged this · 3 years ago
  • reginasknight94
    reginasknight94 liked this · 3 years ago
  • theofficialdeannawinchester
    theofficialdeannawinchester liked this · 3 years ago
  • su-realism
    su-realism liked this · 3 years ago
  • srikarsama
    srikarsama liked this · 3 years ago
  • srikarsama
    srikarsama reblogged this · 3 years ago
  • dracolupus628
    dracolupus628 reblogged this · 3 years ago
  • dracolupus628
    dracolupus628 liked this · 3 years ago
  • harleydoll
    harleydoll liked this · 3 years ago
  • aearyn
    aearyn reblogged this · 3 years ago
  • eagleslee
    eagleslee reblogged this · 3 years ago
  • eagleslee
    eagleslee liked this · 3 years ago
  • metalheadtilimdead
    metalheadtilimdead liked this · 3 years ago
  • enntzim
    enntzim reblogged this · 3 years ago
  • jasjabberwocky
    jasjabberwocky liked this · 3 years ago
  • serendip8y
    serendip8y reblogged this · 3 years ago
  • vividblues
    vividblues liked this · 3 years ago
  • hazelsarahh
    hazelsarahh reblogged this · 3 years ago
  • hazelsarahh
    hazelsarahh liked this · 3 years ago
  • candyland20bp1
    candyland20bp1 liked this · 3 years ago
  • theballadofjohngeorgeandyoko
    theballadofjohngeorgeandyoko liked this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags