Follow Your Passion: A Seamless Tumblr Journey
Lookin’ Good!
I’ve been wanting to be an Astronaut for Halloween but sadly I live in Florida and the heat might suffocate me in a full suit! Perhaps a nice NASA shirt and hat and maybe a fake ID badge and I can go as a scientist :D
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
Artemis Generation Spacesuit Event : Amy Ross, a spacesuit engineer at Johnson Space Center, NASA Administrator Jim Bridenstine, watch as Kristine Davis and Dustin Gohmert wear prototype spacesuits. (via NASA)
Lots of cool moments with the crew in this video. They seem very easy-going and friendly. The fact that they're doing EVA and docking tests could imply that this crew might get to fly on future Artemis missions!
Especially liked the EVA training in the neutral buoyancy lab. The underwater audio is so relaxing. It must be very comfy for those scuba divers down there.
As of writing (12th of February), IFT-3 is currently scheduled to occur later this month, but it could still easily get delayed.
My prediction is that IFT-3 will probably achieve orbit and will probably conduct an internal propellant-transfer, but that the upper stage (SN28) will probably suffer a failure of some kind during reëntry, either being destroyed or deviating far from its targetted splashdown-zone.
It's safe to say that successful reëntry is unlikely on IFT-3. Here's why:
The Starship upper stage will be the largest reëntry-vehicle ever built.
This reëntry profile (a belly-first reëntry with four fins used for stability) is unique and has never been done before. Starship's belly-first orientation is inherently ærodynamically unstable, which is why it needs constant corrections from the four fins. It could get trapped in a nose-first or tail-first orientation, both of which might be more stable. Else, a loss of control would just result in endless tumbling.
We've already seen heatshield-tiles falling off during IFT-1 and IFT-2. In fact, more fell off the latter than the former due to higher ærodynamic pressures and engine vibrations.
A failure during reëntry would be consistent with the general pattern of testflight-failures established so far. Essentially, each flight is a failure, but less of a failure than the previous one.
Honestly, I don't know what could happen to the first stage booster (B10). SpaceX knows how to do boostback-burns and propulsive landings. It's seemingly just a matter of preventing the vehicle from blowing itself up. Engine reliability will probably determine the booster's success.
It'll be interesting to watch nonetheless.
The fate of the Artemis Programme now depends on the success of these test flights and in SpaceX rapidly developing and utilising this reüsable launch-system. Development has been ongoing for over five years now, and the vehicle has yet to reach orbit. The landing of astronauts on the Moon is scheduled for September 2026. How likely is it that SpaceX will have humans on the Moon in just two and a half years from now?